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Abstract

State-of-the-art machine learning models fre-
quently misclassify inputs that have been per-
turbed in an adversarial manner. Adversar-
ial perturbations generated for a given in-
put and a specific classifier often seem to be
effective on other inputs and even different
classifiers. In other words, adversarial per-
turbations seem to transfer between different
inputs, models, and even different neural net-
work architectures. In this work, we show
that in the context of linear classifiers and
two-layer ReLU networks, there provably exist
directions that give rise to adversarial pertur-
bations for many classifiers and data points
simultaneously. We show that these “transfer-
able adversarial directions” are guaranteed to
exist for linear separators of a given set, and
will exist with high probability for linear clas-
sifiers trained on independent sets drawn from
the same distribution. We extend our results
to large classes of two-layer ReLU networks.
We further show that adversarial directions
for ReLU networks transfer to linear classi-
fiers while the reverse need not hold, suggest-
ing that adversarial perturbations for more
complex models are more likely to transfer
to other classifiers. We validate our findings
empirically, even for deeper ReLU networks.

1 Introduction

Many popular machine learning models, including deep
neural networks, have been shown to be vulnerable to
adversarial attacks (Szegedy et al., 2013; Goodfellow
et al., 2014; Nguyen et al., 2015; Moosavi Dezfooli et al.,
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2016). Small adversarial perturbations of image data
can cause the model to significantly misclassify the data,
even though the perturbed image may seem unchanged
to the human eye. These perturbations are highly
structured, as neural networks have been shown to be
robust to random perturbations (Liu et al., 2016; Fawzi
et al., 2016). While there has been a significant amount
of work on designing adversarial attacks (Grosse et al.,
2016; Moosavi Dezfooli et al., 2016; Mopuri et al., 2017;
Hendrik Metzen et al., 2017; Papernot et al., 2016)
and defenses against these attacks (Madry et al., 2017;
Sinha et al., 2017), theoretical properties of these adver-
sarial perturbations are not fully understood. As shown
by Athalye et al. (2018), state-of-the-art defenses are
often beaten in short order by newly designed attacks.
A better theoretical understanding of these adversarial
examples could lead to a better understanding of why
attack and defense strategies perform well in certain
situations and badly in others.

One phenomenon that has been repeatedly observed
in the literature is that adversarial perturbations often
transfer to other data points. For instance, Moosavi-
Dezfooli et al. (2017a) show that adversarial pertur-
bations for a given input often work as an adversarial
direction for many other inputs on the same neural
networks. Such adversarial perturbations are often re-
ferred to as “universal” adversarial perturbations. Even
worse, adversarial perturbations often transfer between
classifiers (Papernot et al., 2016; Liu et al., 2016). This
seems to hold even if the classifiers have different ar-
chitectures Su et al. (2018) or are trained on different
subsets of the training data (Szegedy et al., 2013).

This transferability has led to more effective adversarial
attacks. Narodytska and Kasiviswanathan (2016) show
that even if an adversary only has black-box access
to a neural network, they can still fool it relatively
often. Papernot et al. (2016) construct adversarial ex-
amples with only black-box access to a neural network
by generating adversarial examples on a substitute net-
work designed to emulate the first. Recent work has
attempted to make machine learning systems more se-
cure by “blocking” transferability (Hosseini et al., 2017),
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toonlylimitedsuccess.

Unfortunately,adversarialperturbationsarenotyet
fullyunderstood,especiallyonatheoreticallevel.
Moosavi-Dezfoolietal.(2017b)showthatadversar-
ialperturbationsexistifcertaingeometricconditions
hold,whileFawzietal.(2018)studytherobustnessof
linearandquadraticclassifierstoadversarialexamples.
Tramèretal.(2017)showempiricallythatsubspaces
correspondingtothespanofadversarialexamplesoften
havelargeintersection,demonstratingthecapacityof
adversarialexamplestotransfer.Still,itisnotfully
understoodwhyandwhichadversarialperturbations
transferbetweenclassifiers,evenforrelativelysimple
classifiers.

OurContributions: Inthiswork,weshowthat
forlinearclassifiersandcertaintwo-layerReLUnet-
works,classifierstrainedonsimilardatasetscanoften
betargetedbysimilaradversarialperturbations. More-
over,thegeometryofthedecisionboundarycauses
theseperturbationstobeadversarialformostofthe
trainingdata. Wedothisbyanalyzingdirectionswhich
leadtoadversarialperturbations,so-called“adversarial
directions.” Whilemanyadversarialdirectionsdonot
transfertootherclassifiersanddata,weexplicitlycon-
structadversarialdirectionswhichwilltransferwith
highprobability.

InSection3,weshowthatforlinearclassifiers,the
max-marginSVMcanbeusedtoconstructadversar-
ialdirectionswhichtransfertootherdatapointsand
tootherlinearclassifiers. Wealsoshowthatforall
linearseparatorsofagivendataset,thereareuniver-
saladversarialperturbations(thatis,perturbations
whichareadversarialforallpointswithagivenlabel)
whosenormdependsonlyonthemax-marginclassifier.
Weextendourresultstosoft-marginlinearclassifiers
trainedonindependentdatasets,aswellasmulti-class
linearclassifiers.InSection5,weconsideradversarial
perturbationsforReLUnetworks. Weuseageometric
analysistoshowthatthereexistadversarialdirections
forcertaintwo-layerReLUnetworkswhichtransferto
allothersuchReLUnetworksandallthetrainingdata
ofagivenclass.InSection6weshowthatwhilethese
adversarialdirectionforReLUnetworkstransfertolin-
earclassifiers,thereverseneednothold.InSection7,
weaugmentourtheorywithanempiricalstudyshow-
ingthatadversarialperturbationsoftentransferwithin
aclassifier,andevenbetweendistinctclassifiers.

2 Overview

Notation: Inthefollowingwedenotevectorsinbold
script,andfunctions,sets,andscalarsinstandard
script. Matricesaredenotedbycapitalletters.Fora

vectorw,widenotesitsithelement.

SupposewehavesomedataspaceX⊆Rdwithlabel
spaceY. ForanysetS⊆X×Yanda,b∈Y,let
S[a]={(x,y)∈S:y=a}andS[a,b]={(x,y)∈S:
y∈{a,b}}.Aclassifierisafunctionh:X →Y. We
saythathisS-accurateifforall(x,y)∈S,h(x)=y.
Weareinterestedinwhenwecanperturb x∈Xto
producexsuchthath(x)=h(x).Thisleadstothe
followingdefinition.

Definition. Wesaythat visanadversarialdirection
forhat(x,y)ifh(x)=yandthereissomec>0such
thath(x+cv)=y.

Thevectorcvisreferredtoasanadversarialperturba-
tion,whilethevectorx=x+cvisreferredtoasan
adversarialexample. Wewillshowthatforwell-known
classesofclassifiers,therearedirectionsthataread-
versarialformanyclassifiersonlargesubsetsofX.In
otherwords,theadversarialdirectionis“transferable”
bothtootherclassifiersandtootherdatapoints.

Thefactthatadversarialdirectionstransferisnotim-
mediatelyobviousoreventrueforallmodels. For
example,considerFigure1.Foranylinearclassifier,
themostnaturaladversarialdirectionisthenormal
vectortothedecisionboundary.Ifweconsiderjust
thelinearclassifierh1,thisdirectionisgivenbyv1.
However,v1isnotanadversarialdirectionforh2,as
movinginthatdirectiondoesnotchangeanylabels.
Similarly,v2isadversarialforh2butnotforh1.In
short,notalladversarialdirectionstransfer.

Figure1:Thedecisionboundaryoftwolinearclassifiers,
h1(red)andh2(blue).Thedatawithlabel+1aremarked
bypluses,andthosewithlabel−1aremarkedbycircles.
Forthe+1data,v1andv2giveadversarialdirectionsfor
h1andh2,respectively.

Weinsteadshowthatthemax-marginclassifierforaset
Sgivesusanadversarialdirectionwhichtransferstoall
classifiersthatlinearlyseparateS,andextendthisto
thecasewherewetraintwolinearclassifiersh1,h2on
S1,S2sampledindependentlyfromsomedistribution
D. Wederivethefollowingtheorem.
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Theorem 1. Supposelinearclassifiersh1,h2 are
trainedonsetsS(1),S(2)ofsizensampledindepen-
dentlyfromD,andthateachhjcorrectlyclassifies
Θ(n)ofS(j)correctly. Withhighprobability,thereis
avectorwandasetS⊆S(1)∪S(2)suchthatwis
anadversarialdirectionforbothh1andh2,onSand
|S∩S(j)|=Θ(n)forj=1,2.

ThisisaninformalversionofTheorem7.Intuitively,
aslongaswetrainlinearclassifiersonsimilardatasets,
thereisanadversarialdirectionwhichtransfersbetween
thelinearclassifiersandworksformostofthedata.
Thisoccursevenifh1,h2arenotthemax-marginSVM
onS(1),S(2). Wederiveaversionofthisformulti-class
linearclassifiersinTheorem9.

Forneuralnetworks,thestudyofadversarialdirections
becomesmoredifficult.Foralinearclassifier,anadver-
sarialdirectionforsomedatapointisalsoadversarial
forotherdatapointswiththesamelabel.Thisneed
notholdforneuralnetworks.ConsiderFigure2.There
aretwononlineardecisionboundariesforclassifiers
h1,h2.Notethatv1isadversarialforh1atx1andfor
theotherpointswith+1label.However,v1doesnot
transfertothe+1instancesforh2.Furthermore,v2
isanadversarialdirectionforh2atx2,butdoesnot
transfertoallotherpointswithlabel−1forh2,nor
doesittransfertoany−1labeledpointforh1.

Figure2: Twononlineardecisionboundaries,h1(red)
andh2(blue). Theinstanceswithlabel+1aremarked
bypluses,thosewithlabel−1aremarkedbycircles.An
adversarialdirectionforh1atx1isdenotedbyv1,while
anadversarialdirectionforh2atx2isdenotedbyv2.

Witharbitrarilycomplicateddecisionboundaries,the
studyofadversarialdirectionsbecomesdifficult.Ifwe
imposestructureonourneuralnetworks,wecanbegin
tounderstandthem. Weshowthatforlargeclasses
oftwo-layerReLUnetworks,therearetransferable
adversarialdirections. Thefollowingtheoremisan
informalversionofTheorem15.

Theorem2. FixasetSandconsiderthesetoftwo-
layerReLUnetworkwithnonnegativeweightsonthe
finallayerthatcorrectlyclassifyS.Thereisavector
vSthatisadversarialforallsuchnetworksatanypoint
(x,y)∈Ssuchthaty=−1.

Wealsostudywhetheradversarialdirectionstransfer
betweenlinearclassifiersandReLUs.InSection6
weshowthatwhiletheadversarialdirectionforReLU
networksinTheorem2transferstolinearclassifiers,the
adversarialdirectionforlinearclassifiersinTheorem
1doesnotnecessarilytransfertoReLUs.Ingeneral,
itseemsthatadversarialdirectionsaremorelikelyto
transfertoaclassifierwithalesscomplicateddecision
boundarythanwithamorecomplicatedone. Wegive
supportingempiricalevidenceforthisphenomenonin
Section7.

3 LinearClassifiers

Hard-marginClassifiers: Wefirstfocusonthe
caseofhard-marginlinearclassifierstrainedonthe
sametrainingsetS.Byhard-margin,wemeanthat
theclassifiershouldcorrectlyclassifyeverypointinS.
Wewillshowthatthemax-marginSVMclassifieron S
givesatransferableadversarialperturbationbetween
thelinearclassifiers. Wewillrelatethesizeofthe
perturbationneededtothesupportvectorcoefficients.
Wewillusethisasasteppingstonetoconsiderboth
soft-marginlinearclassifiersandtrainingdatasampled
fromsomeunderlyingdistribution.

SupposewehavedataX⊆Rdwithlabels{±1}.An
linearclassifierhisgivenbyh(x)=sign(w,x+b)
forsomew∈Rd,b∈R. Notethath(x)isinvariant
underscaling(w,b)bythesamepositiveconstant,so
werestrictto w 2=1. WeletHdenotethesetof
suchlinearclassifiers.

SupposewehavesomesetSoflabeledexamples
{(x,y)}Ni=1 andthathisS-accurate. Wewilllet
HS :={h∈ H|hisS-accurate}. Themarginof
h∈HSisdefinedasγ(h)=min(x,y)∈Sy(w,x+b).

Wesaythat SislinearlyseparableifHS =∅.In
thiscase,standardtheoryshowsthatthereisanSVM
classifierh∗∈ HS withmaximummargingivenby
h∗=sign(w∗,x +b∗). Wewillletγ∗denoteits
margin. Wewillusethefollowinglemmaaboutmax-
marginclassifiersonS. ThisfollowsfromTheorem
15.8ofShalev-ShwartzandBen-David(2014)andthe
discussionthereafter,combinedwithstrongduality.

Lemma3.Thereareαi≥0suchthat(1)w
∗=

N
i=1αiyixiand(2)

N
i=1αiyi=0.

Wewillusethistoshowthatthemax-marginclassifier
givesusatransferableadversarialdirection.

Theorem4.Forallh∈HSand(x,y)∈S,−yw
∗is

anadversarialdirectionforhatx.

Aslightmodificationoftheproofshowsthefollowing.

Theorem5. Fixh∈HSwithmarginγh.Fix(x,y)
suchthaty(w,x+b)>0.Thenh(x−cyw∗)=h(x)
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for all c satisfying

c >
y(〈w,x〉+ b)

γh
∑N
i=1 αi

.

Fix a linear classifier h. If we take (x, y) to be the
point in S with minimum margin for h, this implies
that as long as c > (

∑N
i=1 αi)

−1, we will have h(x −
cyw∗) 6= h(x). Thus, for this c, we are guaranteed that
perturbing the data by cyw∗ will cause h to misclassify
some x. This implies the following corollary.

Corollary 6. For any h ∈ HS, there is some (x, y) ∈
S such that for all c > (

∑N
i=1 αi)

−1, h(x − cyw∗) 6=
h(x).

Thus, for any set S, there is a universal constant cS
such that for any h that linearly separates S and any
(x, y) ∈ S, −cSyw∗ is an adversarial perturbation for
h at x.

Soft-margin Classifiers: The results above have
two fundamental limitations. First, they only concern
hard-margin linear classifiers. Second, they assume
that the classifiers are trained on the same dataset S.
Here, we extend the results above to soft-margin linear
classifiers trained on samples drawn independently from
some distribution. We will show that if we train two
separate soft-margin linear classifiers on independently
drawn training sets, then with high probability, there
will be a single adversarial direction for both classifiers
that affects most of the training examples in both sets.

Let D be a distribution over X × Y ⊆ Rd × {±1}.
We assume that with probability 1 over D, ‖x‖2 ≤ R.
Let S(1), S(2) be training sets of size n drawn inde-
pendently from D. Suppose we have two linear classi-
fiers w(1),w(2) trained on S(1) and S(2) in some way.
For notational simplicity, we assume no bias terms,
though the same result can be derived in this set-
ting. Thus, the label assigned to x ∈ X by w(j) is
hj(x) = sign(〈w(j),x〉). We make no assumptions
about the training process itself. We only make three
relatively minor assumptions on the output of the train-
ing process.

Assumption A1. With probability 1 over the training
procedure, ‖w(j)‖2 ≤ B.

Assumption A2. The probability that w(1) correctly
classifies any point in S(1) is independent from the
probability w(2) correctly classifies any point in S(2),
and vice-versa.

Assumption A3. There are at least (1− ρ)n for ρ ∈
[0, 1) points (x, y) ∈ S(j) such that y〈w(j),x〉 ≥ 1.

A1 is a straightforward assumption that states that the
output of the training method cannot be of unbounded

size, while A2 essentially states that the training pro-
cedures are independent. A3 simply says that hj is
correct and confident about its prediction on at least
a (1− ρ) fraction of the dataset. Under these assump-
tions, we have the following theorem about adversarial
directions for h1 and h2.

Theorem 7. Under the assumptions above, with prob-
ability at least 1− 4n−2, there is a set S ⊆ S(1) ∪ S(2)

with max-margin SVM w∗S such that for j ∈ {1, 2},

1. |S ∩ S(j)| ≥ (1− 2ρ)n− 2BR
√
n− 4

√
n ln(n).

2. For all (x, y) ∈ S, −yw∗S is an adversarial direc-
tion for hj at x.

Note that for ρ < 1
2 and BR = o(

√
n), |S∩S(j)| = Θ(n).

Thus, there is a large subset of S(1) ∪ S(2) that both
h1 and h2 are accurate on, but for which there is an
adversarial direction v that transfers among all points
in S and both classifiers.

To prove this, we first use Rademacher complexity
bounds to show there is a large subset S ⊆ S(1) ∪
S(2) that both h1 and h2 classify correctly. Once we
know that such an S exists, we can use our hard-
margin results to find an adversarial direction v that
is adversarial for both classifiers on most of the union
of the training sets. The details are in Appendix ??.

4 Multi-class Linear Classifiers

Hard-margin Classifiers: Suppose now that we
have data X ⊆ Rd with K potential labels. We will
assume these labels are {1, 2, . . . ,K}. We now consider
multi-class classification. One standard way to extend
linear classifiers to multi-class classification is to use a
one-versus-rest approach. With this approach, we train
K binary linear classifiers. We train the k-th linear
classifier on a version of S with modified labels, where
labels of k are replaced with +1 and the remaining
labels are replaced with −1. To classify x, we evalu-
ate it on all K linear classifiers and return the class
maximizing its output value.

Formally, we consider classifiers of the form h(x) =
g(Wx + b) where W ∈ RK×d, b ∈ RK and g(z) =
argmax1≤i≤K zi. Intuitively, g(z) returns the index i
of the largest entry of z. We letM denote the set of
such classifiers.

This setup generalizes standard techniques such as
soft-max layers. The soft-max function s : Rd → Rd
turns any vector in to a probability vector, but satisfies
g(s(z)) = g(z). Therefore, our setup includes the soft-
max function and any classifier h that returns the index
maximizing the vector Wx+ b. Let S denote some set
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of instances with labels in {1, . . . ,K}. We will letMS

denote the set of S-accurate classifiers.

Note. A linear classifier is S-accurate if 〈w,x〉 + b
is positive for all positive instances and negative for
the rest. For the multi-class case, S-accuracy does not
require positivity of any classifier. Suppose x has label
k, and let z = Wx + b. To classify x accurately we do
not require zj < 0 for j 6= k. In fact, all of z can be
positive as long as the largest entry is zk.

Recall that for k ∈ {1, . . . ,K}, we define S[k] =
{(x, y) ∈ S | y = k}. We will use max-margin classi-
fiers to construct transferable adversarial directions for
S[k], as in the following theorem.

Theorem 8. Fix k ∈ {1, . . . ,K}. There is a vector
v∗k such that for all h ∈MS and for all (x, y) ∈ S[k],
v∗k is an adversarial direction for h at x.

A proof is given in the appendix. In fact, the theorem
actually shows a slightly stronger statement. Namely,
that for distinct k, l ∈ {1, . . . ,K}, there is a vector
v∗k,l that is an adversarial direction for all h ∈ MS

and for all (x, y) ∈ S[k, l], where S[k, l] was defined as
{(x, y) ∈ S | y ∈ {k, l}}.
Note that it is not necessarily true that for sufficiently
large c, for any x ∈ S[k], h(x − cw∗) = m. The
direction −w∗ may also increase the output associated
to some other label. Since we know that (W (x−cw∗)+
b)k < (W (x − cw∗) + b)l for sufficiently large c, this
is sufficient to show that h(x− cw∗) 6= k = h(x).

Soft-margin Classifiers: As in Section 3, we can
extend our results to soft-margin classifiers trained
on independently drawn sets. Suppose that we have
some distribution D on X × {1, . . . ,K} such that with
probability 1 over D, ‖x‖2 ≤ R. Let S(1), S(2) be
training sets drawn independently fromD. We have two
modelsW (1),W (2) trained on S(1) and S(2) in some way
again with no bias terms. Letw(j)

i denote the transpose
of the i-th row of W (j). The label assigned to x ∈ X
by W (j) is given by hj(x) = max1≤i≤K〈w(j)

i ,x〉.
As in Section 3, we do not make any explicit assump-
tions on the training process, only a few minor assump-
tions on the output models. Fix some k ∈ {1, . . . ,K}.
Recall that for any set S ⊆ Rd × {1, . . . ,K}, S[k] de-
notes the subset of S with label k and S[k, l] denotes
the subset with label k or l. We assume the following
three properties hold for j ∈ {1, 2}.
Assumption B1. With probability 1 over the training
procedure, for i ∈ {1, . . . ,K}, ‖w(j)

i ‖2 ≤ B.

Assumption B2. The probability that W (1) correctly
classifies any point in S(1) is independent from S(2)

and W (2), and vice-versa.

Assumption B3. There is a label l such that at least
a (1 − ρ) fraction of points (x, y) ∈ S(j)[k, l] satisfy
hj(x) = y and |〈w(j)

k ,x〉 − 〈w(j)
l ,x〉| > 1.

B1 and B2 are analogues of A1 and A2 in the lin-
ear classifier case and are relatively straightforward
assumptions. B3 is a kind of multi-class generalization
of A3. It says that our classifier is approximately ac-
curate on a fraction of samples with label k or l, and
moreover, that for such samples, W (j) is much more
confident about the label k than the label l. In other
words, W (j) does not conflate the labels k and l.

For simplicity we assume that |S(1)[k, l]| = |S(2)[k, l]| =
n. In general, we can derive an analogous result to
Theorem 9 below based on the ratio of |S(1)[k, l]| to
|S(2)[k, l]|. Note that as we sample more from D, with
high probability |S(1)[k, l]|/|S(2)[k, l]| will be close to 1.
We then have the following theorem, whose proof we
leave to the appendix.

Theorem 9. Fix k ∈ {1, . . . ,K} satisfying the above
assumptions. With probability at least 1− 4n−2, there
is a vector v and a set S ⊆ S(1)[k, l] ∪ S(2)[k, l] such
that for j ∈ {1, 2},

1. |S ∩S(j)[k, l]| ≥ (1− 2ρ)n− 4BR
√
n− 4

√
n ln(n).

2. For all (x, y) ∈ S such that hj(x) = y, −v is an
adversarial direction for hj if y = k, and v is an
adversarial direction for hj if y = l.

Note. Condition 2 of Theorem 9 is slightly weaker
than condition 2 of Theorem 7. While the adversarial
direction still transfers, we do not require h1 to correctly
classify S∩S(2)[k, l]. This slight weakening comes about
by reducing the multi-class linear classification case to
the single-class linear classification case.

5 Two-layer ReLU Networks

In this section we show that for certain classes of two-
layer ReLU networks and any data set S, there is an
adversarial direction for all networks in this class that
separate S. In other words, if we restrict to certain
classes of two-layer ReLU networks, then fitting to
a data set S forces the network to be susceptible in
specific directions.

Let σ denote the ReLU function. For z ∈ R, σ(z) =
max{0, z}. For z ∈ Rn, we abuse notation to let σ(z)
denote the vector with σ(z)i = σ(zi). A two-layer
ReLU network with hidden layer of width L is a function
f : Rd → Rk of the form f(x) = V σ(Wx + b).

For simplicity, we will only consider binary classification
with labels {±1}. Therefore, we restrict to the setting
where k = 1, so that there is only one output unit.
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In this case, a ReLU network is of the form f(x) =
vTσ(Wx + b) for some v ∈ RL. A ReLU classifier is
a function h : Rd → {±1} of the form h(x) = g(f(x))
where f is a ReLU network and g : R → {±1} is
some decision rule. We will often consider g that are
indicator functions of the form g(z) = 1 for z ∈ A and
−1 otherwise. We denote such a function by JA(z).

We first consider ReLU networks F where v is the all-
ones vector and ReLU classifiers R consisting of ReLU
networks in F combined with the classification rule g
where g(x) = 1 if x > 0 and −1 otherwise. Formally,
we define:

F :=

{
f : Rd → R

∣∣∣∣∣ f(x) =
L∑
i=1

σ(wT
i x + bi)

}
.

R :=

{
h : Rd → {±1}

∣∣∣∣ h(x) = g(f(x)),
g(z) = J(0,∞)(z)

}
.

Intuitively, such ReLU classifiers compute L functions
of the form σ(wT

i x + bi) and then return 1 if at least
one of these is positive.

Let S ⊆ Rd × {±1} denote a set of labeled data. We
assume that S contains at least one example with each
label. We let RS denote the set of S-accurate classifiers
in R. We then have the following theorem that shows
the existence of transferable adversarial directions for
such classifiers.

Theorem 10. There is some v such that for all
h ∈ RS and (x,−1) such that h(x) = −1, v is an
adversarial direction for h at x.

Note that the theorem implies more than v being adver-
sarial for h on S. In particular, it applies to any (x,−1)
such that h(x) = −1. Thus, v may be adversarial for
more than just instances in the training set.

We will derive this theorem as a consequence of a more
general theorem. Suppose we have two possible labels,
α and β. Consider all functions h : Rd → {α, β}.
Suppose we have some set S ⊆ Rd × {α, β}. We will
analyze h such that h−1(α) is convex (note that h−1(β)
is not necessarily convex). We define

C := {h | h is continuous, h−1(α) is convex}.

We denote the set of S-accurate h in C by CS . We
then have the following theorem, which we prove in the
appendix.

Theorem 11. There is some v such that for all h ∈ CS
and (x, α) such that h(x) = α, v is an adversarial
direction for h at x.

The requirement that h ∈ CS can be weakened. Fix
xα ∈ S[α] and xβ ∈ S[β]. Let T denote the set

of continuous functions h : Rd → {α, β} such that
h(xα) = α, h(xβ) = β, and there is some convex set
Ch containing xα such that for all x ∈ Cch, h(x) = β.
A similar proof then shows the following result.
Theorem 12. Fix xα ∈ S[α],xβ ∈ S[β]. There is
some v ∈ Rd such that for all h ∈ T and for all
(x, α) ∈ Ch such that h(x) = α, v is an adversarial
direction for h at x.

To apply Theorem 11 to RS , it suffices to show the
following lemma. We do so in the appendix.
Lemma 13. For h ∈ R, h−1(−1) is convex.

We can extend R to include a broader class of ReLU
classifiers. Define

F ′ :=

{
f : Rd → R

∣∣∣∣ f(x) = vTσ(Wx + b),
vi ≥ 0, ∀i

}
.

G :=

{
g : R→ {±1}

∣∣∣∣ g(z) = J(a,∞)(z), a > 0
or g(z) = J[a,∞)(z), a > 0

}
.

We can view F ′ as the set of two-layer ReLU neural net-
works whose output layer has all nonnegative weights.
We then define

R′ :=

{
h : Rd → {±1}

∣∣∣∣ h(x) = g(f(x)),
f ∈ F ′, g ∈ G

}
.

In order to apply Theorem 11, we would need to show
that one of the decision regions of any h ∈ R′ is convex.
More formally, we have the following lemma.
Lemma 14. For h ∈ R′, h−1(−1) is convex.

A proof is given in the appendix. Combining Theorem
11 and Lemma 14, we derive the following.
Theorem 15. There is some v such that for all
h ∈ R′S and (x,−1) such that h(x) = −1, v is an
adversarial direction for h at x.

We can also extend this result to a class of ReLU
classifiers R′′ that are similar to R. Here, we consider
the set of ReLU networks

F ′′ :=
{
f : Rd → RL

∣∣ f(x) = σ(Wx + b)
}

where W ∈ RL×d so that the output is potentially
vector-valued and σ is the ReLU function applied entry-
wise. Let φ : RL → R where φ(z) = 1 if all entries of
z are positive and −1 otherwise. We then define

R′′ :=

{
h : Rd → {±1}

∣∣∣∣ h(x) = φ(f(x)),
f ∈ F ′′

}
Since φ(z) = 1 if all the entries of x are positive and
−1 otherwise, h−1(1) is the intersection of L open half-
spaces corresponding to the pair (W, b). Therefore,
h−1(1) is convex. Applying Theorem 11, we then get
the following theorem concerning the set R′′S of S-
accurate classifiers in R′′.
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Theorem16. Thereissomevsuchthatforallh∈
RSand(x,1)suchthath(x)=1,visanadversarial
directionforhatx.

6 TransferabilityBetweenLinear
ClassifiersandReLUNetworks

Inthissectionweanalyzewhethertheadversarialdi-
rectionsabovetransferbetweenclassifiersofdifferent
types. Wewilldetermineifandwhenadversarialdirec-
tionsforlinearclassifiersinSection3transfertothe
ReLUclassifiersinSection5andvice-versa.

SupposewehavesometrainingsetS⊆Rd×{±1}. We
wishtoconsiderapplyingbothlinearclassifiersand
ReLUclassifierstoS.Recallthatabove,wedefined
HtobethesetoflinearclassifiersonRd. Wealso
definedR asthesetoftwo-layerReLUclassifiersofthe
formh(x)=g(f(x))whereg(z)=J[a,∞)(z)org(z)=
J(a,∞)(z)andfisoftheformf(x)=v

Tσ(Wx+b)
withv≥0.RecallthatforasetA,JA(z)is1ifz∈A
and−1otherwise.

Wewilllet HS,RSdenotethesetofS-accurateclassi-
fiersineachofthesesets.InSection3,weconstructed
adversarialdirectionsthatappliedtoallh∈HSand
all(x,y)∈S,whileinSection5,weconstructedad-
versarialdirectionsforallh∈RSand(x,y)∈S[−1],
thatis,exampleswithlabel−1. Wewillshowthatthe
adversarialdirectionforRSconstructedinTheorem
15transferstoHS,whiletheadversarialdirectionfor
HSconstructedinTheorem4neednottransfertoRS.

ToseethattheadversarialdirectionvforRStrans-
ferstoHS,recallthatthisdirectionwasderivedfrom
Theorem11.Inparticular,allthatisnecessaryforv
totransfertoaclassifierhisthath−1(−1)isconvex
andthatHSisnon-empty.Sincelinearclassifiersdi-
videthedataspaceintohalf-spaces,weknowthat
foranyh∈H,h−1(−1)andh−1(+1)arebothconvex.
Therefore,wegetthefollowingcorollary.

Corollary17. SupposeSislinearlyseparable.Then
thereexistsv∈Rdsuchthatforallh∈RS∪HSand
x∈h−1(−1),visanadversarialdirectionforhatx.

TheadversarialdirectionforHSconstructedinTheo-
rem4doesnotnecessarilytransfertoRS.Agraphical
explanationofthisisgiveninFigure3.Asstatedin
Corollary17,theReLUadversarialdirectionv2con-
structedintheproofofTheorem15transferstothe
linearclassifierclassifierh1.However,thelinearclassi-
fieradversarialdirectionv1constructedintheproofof
Theorem4doesnotserveasanadversarialdirection
forthe−1labeledpointsforh2.Thevectorv2iscon-
structedintheproofofTheorem11inAppendix??,
andcanbeanyvectorv2inthedirectionofxβ−xα
foranyxβ∈S[1],xα∈S[−1].

Figure3:Thedecisionboundaryofalinearclassifierh1and
atwo-layerReLUclassifierh2,inredandblue,respectively.
Theinstanceswithlabel1aremarkedbypluses,those
withlabel−1aremarkedbycircles.Thevectorv1isthe
adversarialdirectionforh1fromTheorem4,andv2isthe
ReLUadversarialdirectionTheorem15pointingfromxα
toxβ.

ThisintuitiveideaformalizedinAppendix??.There,
weexplicitlyconstructalinearlyseparabledatasetand
aReLUnetworkthatcorrectlyclassifiesthedatabut
wherethemax-marginclassifierdoesnottransferto
theReLUclassifier.

7 Experiments

Inthissectionweempiricallystudyhowwelladver-
sarialperturbationstransferbetweenclassifiers. As
demonstratedbyMoosavi-Dezfoolietal.(2017a),Nar-
odytskaandKasiviswanathan(2016),andPapernot
etal.(2016),adversarialexamplesoftentransferto
otherclassifiers.Here,weshowempiricallythatadver-
sarialperturbationsforReLUnetworksoftentransfer
tootherReLUnetworksandSVMs.Similarly,adver-
sarialperturbationsforSVMstrainedondifferentdata
setsoftentransferamongoneanother. Ourexperi-
mentsindicatethatadversarialexamplesgenerated
fromSVMstransferlessoftentoReLUnetworks.

Setup: WeusetheMNISTdatasettoperformour
experiments. MNISTconsistsofhandwrittennum-
bersrepresentedasvectorsx∈R28×28withlabelsin
{0,1,...,9}. WeusePytorch(Paszkeetal.,2017)to
train50moderately-sizedneuralnetworkswiththe
samearchitectureasthePyTorchMNISTexamples.
Eachneuralnetworkistrainedon10000randomim-
agesfromtheMNISTtrainingset. Weusescikit-Learn
LinearSVC(Pedregosaetal.,2011;Fanetal.,2008)
totrain50supportvectormachines,eachon10000
randomimagesfromtheMNISTtrainingset.

Togenerateadversarialexamples,weusethepro-
jectedgradientmethodofMadryetal.(2017).Define
B(x,)={x:x−x ∞ ≤ }.Tofindanadversar-
ialx∈B(x,),thismethodusesprojectedgradient
ascentwithstep-sizeγtomaximizethelossfunction
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J.Thus,wemoveouriteratesx(t)inthedirectionof
γ∇x(t)(J)andthenprojectontoB(x,).

Weperform40iterationswithγ=.01toproduceadver-
sarialexamplesinB(x,)for in{0.01,0.02,...,0.40}.
Foreachclassifierand ,weconstruct1000adversarial
examplesbyapplyingFGSMto1000randomlyselected
examplesfromtheMNISTtestset.Foreach,this
givesus50000SVMadversarialexamples50000neural
networkadversarialexamples. Wealsogenerate50000
randomperturbationsforagiven.

Foreachclassifier,wefinditsoverallaccuracyonthe
randomperturbations,SVMadversarialexamples,and
neuralnetworkadversarialexamples. Weplotthe
averageaccuracy(overallclassifiersofagiventype)in
Figure4. Wealsoploterrorbarscorrespondingtothe
minimumandmaximumtotalaccuracyofanysingle
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Figure4: Averageclassifieraccuracyafterapplying
perturbationsofvarying ∞ norm.Perturbationsare
generatedrandomly,bySVMadversaries,andbyneural
network(NN)adversaries.

Aspreviouslydemonstratedinotherworks(seeworkby
Liuetal.(2016)andFawzietal.(2016)),bothSVMs
andneuralnetworksarerelativelyrobusttorandom
perturbations.ConsiderFigure4a.Thisshowsthat
SVMsareoftensusceptibletoadversarialexamplesgen-
eratedfromotherSVMstrainedondifferentsubsetsof
thedata.ThissupportsourresultthatSVMstrained
independentlyfromsomedistributionarejointlysus-
ceptibletosomeadversarialdirection. Moreover,SVMs
arestillsomewhatsusceptibletoadversarialexamples
generatedfromneuralnetworks. WhileSVMadver-
sariesaremoreeffectivethanNNadversariesatfooling
otherSVMs,theneuralnetworkadversarialexamples
stilldomuchbetterthanrandomperturbations.

Similarly,neuralnetworkadversarialexamplestrans-
fertootherneuralnetworks,asshowninFigure4b.
Despitebeingtrainedondifferentsubsetsofthedata,
theseneuralnetworksareoftensusceptibletosimilar
perturbations. Thisstandsinstarkcontrasttothe
resilienceofneuralnetworkstorandomperturbations.
ThisfigurealsosupportsourtheoryfromSection6stat-
ingthatadversarialexamplesgeneratedfromSVMs
neednottransfertoneuralnetworks.SVMadversaries
onlydoslightlybetterthanrandomperturbationsat
foolingneuralnetworks.Thisalignswiththeempiri-
callyobservedphenomenonthatclassifierswithmore
capacityseemtobemoreresistanttoadversarialat-
tacks(Goodfellowetal.,2014).

8 Conclusion

Inthispaper,wetheoreticallyinvestigatethetrans-
ferabilityofadversarialdirectionsonlinearclassifiers
andtwo-layerReLUnetworks.Ourresultsshowthat
classifiersthataccuratelyclassifysimilardatasetsare
oftenjointlysusceptibletosomeadversarialdirection.
Thisholdsevenwithoutassumptionsonthetraining
procedure. Moreover,weshowthatwhileadversarial
perturbationsforReLUnetworkstransfertolinearclas-
sifiers,thereverseneednothold. Weconfirmallofour
findingsexperimentallyonMNIST.

Adversarialexamplesandtransferabilityarestillnot
fullyunderstood. Whilewefocusonadversarialdi-
rections,anaturalextensionwouldbetoconstrain
thenormoftheperturbationallowed. Second,our
resultsarederivedonlyforlinearclassifiers,andcould
bestudiedfromakernelperspectiveaswell.Finally,
ourresultsaboveshowthatReLUadversarialexamples
oftentransfertolinearclassifiers.Isthisphenomenon
moregeneral?Doadversarialexamplesclassifierswith
highereffectivecapacitytendtotransfertothosewith
lowereffectivecapacity?Answerstothesequestions
couldhelpinformfutureworkindesigningadversary-
resistantclassifiers.
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